

�

_äìÉ`çêÉ»=eçëí=pçÑíï~êÉ

Porting Guide
BCHS GU 002

For Version 7.0
January 2004

CSR
 Unit 400 Cambridge Science Park

Milton Road
 Cambridge

CB4 0WH
United Kingdom

 Registered in England 3665875

bchs-gu-002P

© Copyright CSR 2004
This material is subject to CSR’s non-disclosure agreement.

http://www.csr.com/

Contents

Contents

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

General Information .. 4
1 Introduction .. 5

1.1 General Information.. 5
1.2 Audience .. 5
1.3 Reading Information ... 5

2 Porting Model ... 6
3 Scheduler API... 7

3.1 Porting Method... 7
3.2 Scheduler Porting... 7

3.2.1 Controlling the Scheduler from the Native Kernel.. 7
3.2.2 Task Scheduling .. 8
3.2.3 Background Interrupt ... 8
3.2.4 Message Forwarding ... 9
3.2.5 Timer Handling .. 9
3.2.6 Dynamic Memory Allocation Handling ... 9
3.2.7 Exception Handling.. 10
3.2.8 Controlled Shut Down.. 10

4 Persistent Memory Access ... 12
5 Lower Layer UART Interface ... 13

5.1 Porting the UART Interface .. 14
5.1.1 abcsp_init .. 14
5.1.2 UartDrv_Configure... 14
5.1.3 UartDrv_RegisterHandlers... 14
5.1.4 UartDrv_Start... 14
5.1.5 UartDrv_RX ... 15
5.1.6 UartDrv_TX.. 15

5.2 Proxy Related Parameter Configuration... 15
6 Upper Layer Interface .. 16

6.1 Downstream Messages (Host to Scheduler) .. 16
6.2 Upstream Messages (Scheduler to Host)... 16

7 Audio Configuration .. 17
7.1.1 Audio over PCM .. 17
7.1.2 Audio over BCSP... 17

Appendix A : Porting Example for Nucleus PLUS ... 18
A1. Introduction .. 18
A2. Overview.. 18
A3. The Scheduler ... 19
A4. Document References ... 33

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 2 of 33

Contents

List of Figures

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

Figure 1: Porting Model... 6
Figure 2: BCHS Bluetooth® functional layer to Scheduler encapsulation .. 7
Figure 3: RFCOMM build model.. 13
Figure 4: HCI build model ... 13
Figure 5: HCI SCO data packet... 17
Figure 6: The Scheduler and the Application run as separate tasks in the Nucleus PLUS kernel 18
Figure 7: Each Scheduler task is attached to one message queue... 24

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 3 of 33

General Information

General Information

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

Ownership

All information contained in this document is owned by Cambridge Silicon Radio Ltd. and should not be copied
for any purpose.

The BlueCore™ Host Software is owned by Cambridge Silicon Radio Ltd (CSR). The right to use this software is
described in a separate license agreement.

Trademarks

Bluetooth® and the Bluetooth® logos are trademarks owned by Bluetooth® SIG Inc., USA and licensed to CSR.

_äìÉ`çêÉ is a trademark of Cambridge Silicon Radio Ltd.

All other product, service and company names are trademarks, registered trademarks, or service marks of their
respective owners.

Confidentiality

This document contains confidential information that is proprietary to CSR. This information must only be used for
its intended purpose and should not be disclosed to third parties.

Liability

CSR’s products are not authorised for use in life-support or safety-critical applications.

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 4 of 33

Introduction

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

1 Introduction
1.1 General Information

BlueCore™ Host Software (BCHS) is developed to work with CSR’s family of BlueCore™ IC’s.

BCHS is intended for embedded products having a host processor for running the BCHS and the Bluetooth®

application. BCHS together with the BlueCore™ IC is a complete Bluetooth® system solution from RF to profiles.
BCHS includes much of the Bluetooth® intelligence and gives the user a simple API. This makes it possible to
develop a Bluetooth® product without in-depth Bluetooth® knowledge.

Please read the license agreements [LIC] before use.

1.2 Audience

This porting guide gives an overview of how the BCHS can be ported to a platform defined by the end user and
which tasks are involved in the porting. This document is a supplement to the BCHS-API-001_UserGuide and
must be read in conjunction with the user guide.

The information contained in this porting guide is intended for system architects and system designers designing
a system where BCHS must be included as a system component. Besides having in-depth knowledge of C-
programming and real-time programming, the following competences are necessary for a successful porting of
BCHS:

� Target OS/kernel (especially UART communication) to port to and how it is used by current applications

� The ported scheduler

It is also desirable to have basic knowledge of:

� Memory management principles

� Task scheduling and general kernel principles

1.3 Reading Information

The focus of this document is to describe how BCHS can be ported. The document is divided into chapters for
the different areas that need consideration during porting, see also chapter 2. For detailed information about the
various profile APIs, please refer to the API documentation for the relevant profile.

Information about the Scheduler API and how to port the Scheduler can be found in chapter 3.

A description of the function to access the persistent memory can be found in chapter 4.

An overview of YABCSP and how to interface the lower layers to the communication driver can be found in
chapter 5.

In chapter 6 a description of the upper layer interface is given.

In chapter 7 it is describe how to configure the Audio over PCM or BCSP.

A porting example based on the Nucleus PLUS Kernel is described in Appendix A. The appendix is a user guide
in porting the Scheduler API by implementing a new Scheduler, and how to port the UART driver.

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 5 of 33

zwenjun
铅笔

Porting Model

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

ç
ëí=p

t

2 Porting Model 2 Porting Model
With the BCHS package everything required for easy development of Bluetooth® applications is supplied. A
central point regarding BCHS is that it is designed to be portable. BCHS is therefore designed with minimal
dependencies on external systems and this again implies that BCHS executes with a very limited set of external
functions.

With the BCHS package everything required for easy development of Bluetooth® applications is supplied. A
central point regarding BCHS is that it is designed to be portable. BCHS is therefore designed with minimal
dependencies on external systems and this again implies that BCHS executes with a very limited set of external
functions.

Figure 1 illustrates the main components in a system with BCHS integrated and the external dependencies of
BCHS. Please note that only a subset of the supplied Profile Managers is included in the figure.
Figure 1 illustrates the main components in a system with BCHS integrated and the external dependencies of
BCHS. Please note that only a subset of the supplied Profile Managers is included in the figure.

The figure illustrates how the BCHS components execute with a Scheduler or a Scheduler API. Apart from the
Scheduler API arrows represent the external interfaces. The number of external interfaces is kept to a minimum
in order to ease integration into other subsystems. The external interfaces, which need to be ported, can be
divided into:

The figure illustrates how the BCHS components execute with a Scheduler or a Scheduler API. Apart from the
Scheduler API arrows represent the external interfaces. The number of external interfaces is kept to a minimum
in order to ease integration into other subsystems. The external interfaces, which need to be ported, can be
divided into:

1. Scheduler API, which is further described in [API]. 1. Scheduler API, which is further described in [API].

2. Persistent Memory Access for storing of link keys of bonded devices symbolised by the Device
DB.

2. Persistent Memory Access for storing of link keys of bonded devices symbolised by the Device
DB.

3. Lower layer UART interface for BlueCore™ communication. 3. Lower layer UART interface for BlueCore™ communication.

4. Upper layer interface symbolised by the APP2BCHS communication box. 4. Upper layer interface symbolised by the APP2BCHS communication box.

A description of the process of porting the four interfaces is giving in the following chapters. It is recommended
that the porting will be done in the same order. The porting affects the identified interfaces and depends on the
existing host kernel to which the port is to be carried out. As a supplement to the following chapters, please refer
to Appendix A, which is a user guide in porting to the Nucleus PLUS kernel.

A description of the process of porting the four interfaces is giving in the following chapters. It is recommended
that the porting will be done in the same order. The porting affects the identified interfaces and depends on the
existing host kernel to which the port is to be carried out. As a supplement to the following chapters, please refer
to Appendix A, which is a user guide in porting to the Nucleus PLUS kernel.

Host Operating System

Connection Manager

SC

Protocol Stack Proxy

DUN OBEX SC

Application Layer

Communication Driver

APP2BCHS COM

Scheduler

Device DB

Host Operating System

Connection Manager

DUN

Protocol Stack Proxy

OBEX …… SC

Application Layer

Communication Driver

APP2BCHS COM

Scheduler

Device DB

Host Operating System

Connection Manager

SC

Protocol Stack Proxy

DUN OBEX SC

Application Layer

Communication Driver

APP2BCHS COM

Scheduler

Device DB

Host Operating System

Connection Manager

DUN

Protocol Stack Proxy

OBEX …… SC

Application Layer

Communication Driver

APP2BCHS COM

Scheduler

Device DBDevice DB

Figure 1: Porting ModelFigure 1: Porting Model

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 6 of 33

zwenjun
铅笔

zwenjun
铅笔

Scheduler API

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

ç
ëí=p

t

3 Scheduler API 3 Scheduler API
Before starting porting the Scheduler API it is recommended that [API] is read thoroughly. This document outlines
how the scheduler is organised, which makes it a fundamental part to understand.
Before starting porting the Scheduler API it is recommended that [API] is read thoroughly. This document outlines
how the scheduler is organised, which makes it a fundamental part to understand.

3.1 Porting Method 3.1 Porting Method

Basically the porting of the Scheduler API can be done in two different ways: Basically the porting of the Scheduler API can be done in two different ways:

1. By using the native kernels scheduling mechanism to provide the Scheduler API. 1. By using the native kernels scheduling mechanism to provide the Scheduler API.

2. By implementing a dedicated Scheduler mechanism for BCHS. 2. By implementing a dedicated Scheduler mechanism for BCHS.

It is also possible to use a mix of method 1 and 2. Which method to use depends on the actual host kernel to port
to. If the host kernel provides functions where porting is straightforward or provides functions very similar to the
ones required in [API], obviously it is preferable to use method 1. If it is not possible to use method 1, in full or
part, method 2 can be used. In this method a Scheduler layer is implemented on top of the existing environment,
which may be the host kernel. This adds a little overhead in terms of processing power required since the
functions must be mapped to an existing kernel API. However, since the Scheduler API defined in [API] is very
limited this is a simple task and the overhead is very limited. Whichever method is used, the key point is that the
porting requires no changes in BCHS, but providing the functions defined by the interfaces only. The porting job
is very much influenced by the choice of the porting method.

It is also possible to use a mix of method 1 and 2. Which method to use depends on the actual host kernel to port
to. If the host kernel provides functions where porting is straightforward or provides functions very similar to the
ones required in [API], obviously it is preferable to use method 1. If it is not possible to use method 1, in full or
part, method 2 can be used. In this method a Scheduler layer is implemented on top of the existing environment,
which may be the host kernel. This adds a little overhead in terms of processing power required since the
functions must be mapped to an existing kernel API. However, since the Scheduler API defined in [API] is very
limited this is a simple task and the overhead is very limited. Whichever method is used, the key point is that the
porting requires no changes in BCHS, but providing the functions defined by the interfaces only. The porting job
is very much influenced by the choice of the porting method.

In Figure 2 a conceptual model of the encapsulation of the BCHS layers is illustrated. Depending on the actual
porting method, the Scheduler may be an actual component layer in BCHS or it may merely be a virtual layer
providing the API layer only.

In Figure 2 a conceptual model of the encapsulation of the BCHS layers is illustrated. Depending on the actual
porting method, the Scheduler may be an actual component layer in BCHS or it may merely be a virtual layer
providing the API layer only.

Host environment

Scheduler

BCHS layer
Scheduler API

Host OS API
Host environment

Scheduler

BCHS layer
Scheduler API

Host OS API
Host environment

Scheduler

BCHS layer
Scheduler API

Host OS API
Host environment

Scheduler

BCHS layer
Scheduler API

Host OS API

Figure 2: BCHS Bluetooth® functional layer to Scheduler encapsulation Figure 2: BCHS Bluetooth® functional layer to Scheduler encapsulation

3.2 Scheduler Porting 3.2 Scheduler Porting

This section is a general guide of how to port the Scheduler to a native kernel according to method 2, see section
3.1. The features mentioned must be considered and ported to the kernel in which the Scheduler is executing.
This section is a general guide of how to port the Scheduler to a native kernel according to method 2, see section
3.1. The features mentioned must be considered and ported to the kernel in which the Scheduler is executing.

Please note that when the Schedule API is ported, test cases to validate the port of this API can be found in
Drivers/Scheduler/Test (path relative to installation path).
Please note that when the Schedule API is ported, test cases to validate the port of this API can be found in
Drivers/Scheduler/Test (path relative to installation path).

3.2.1 Controlling the Scheduler from the Native Kernel 3.2.1 Controlling the Scheduler from the Native Kernel
The Scheduler examples provided with BCHS are initialised with a call to a function called init_sched. This
function must be called from the host application and will initialise the necessary internal Scheduler variables.
This is also the function in which any other initialising functions can be located, e.g. initialise memory if needed.

The Scheduler examples provided with BCHS are initialised with a call to a function called init_sched. This
function must be called from the host application and will initialise the necessary internal Scheduler variables.
This is also the function in which any other initialising functions can be located, e.g. initialise memory if needed.

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 7 of 33

Once initialised, the Scheduler examples are started with a call to the function sched. The sched function
contains the Scheduler functionality and will not return (because it enters an endless loop, which schedules the
BCHS tasks according to the round-robin principle).

Once initialised, the Scheduler examples are started with a call to the function sched. The sched function
contains the Scheduler functionality and will not return (because it enters an endless loop, which schedules the
BCHS tasks according to the round-robin principle).

zwenjun
铅笔

zwenjun
铅笔

zwenjun
铅笔

zwenjun
线条

zwenjun
线条

zwenjun
线条

zwenjun
线条

zwenjun
线条

Scheduler API

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

3.2.2 Task Scheduling

As described in [API], the scheduler organises the code as a set of tasks, and provides means for communication
between the tasks. Every task requires one message queue only. All tasks in BCHS are defined to be equal
regarding run level priority, and are not designed to be re-entrant. Hence BCHS tasks do not make any
assumption on task priority or execution sequence; all tasks are defined with one run level.

The tasks defined in the BCHS Scheduler examples are all defined in the tasks.h/c file. The tasks.c file
contains the queue identifiers for the different tasks. Tasks that are added as a result of the port and visible to the
scheduler must be added to the tasks.h/c file. These are also the tasks for which an initialization and task
handler function is defined. If the initialization function is NULL defined it is not used (see tasks.c).

BCHS is supplied with multiple profiles. Depending on the application it may be feasible to include/exclude one or
more of the profile layers. To exclude a profile layer, use the:

� EXCLUDE_XXX_MODULE

define. All modules is defined in the BCHS User Guide, see BCHS-GU-001_UserGuide.

During start-up, i.e. in the initialisation function, a task may use the Scheduler API to communicate with other
BCHS tasks. It is the responsibility of the Scheduler/host OS to ensure that BCHS tasks are not actually invoked
before the initialisation function is completed for all defined and included components.

When the task handler is called, the BCHS task will complete the function related to the event received; the
function will run until completion and not hand over control to the calling function until this point. All BCHS tasks
are designed to complete as soon as possible.

3.2.3 Background Interrupt

Since the Scheduler is not re-entrant safe, foreground tasks, such as UART communication drivers, must not
interrupt the Scheduler background job. Instead a mechanism to inform the background task that a foreground
task needs attention must be implemented.

In the Scheduler examples are provided by BCHS and the functions that need consideration for background
interrupt handling are:

� register_bg_int

� bg_intx, where x is a number indicating the interrupt number

Background interrupts are expected to be used to allow a foreground task to tell the background task (the
Scheduler) that data is sitting in a buffer, and is available for analysis by the background task. This will avoid that
the background task needs to poll the buffers. The foreground can call function bg_intx with x being the
requested background interrupt number.

A background interrupt is registered with a call to register_bg_int. This function must be called from within the
function that makes use of the background interrupt function. The register_bg_int function defines the interrupt
number and the function to be activated. In section 5.1 it is described how the UART drivers used this
mechanism.

Please note that example code of register_bg_int and bg_intx functions can be found in the bg_int.c/.h files.

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 8 of 33

zwenjun
线条

Scheduler API

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

3.2.4 Message Forwarding

Every task requires one message queue only. It is the responsibility of the host kernel or the Scheduler to handle
messages passing between the task, both internally between BCHS tasks as well as between BCHS task and
external components. The functions that need to be considered when porting message forwarding are:

� put_message

� cancel_message

� get_message
� put_message_in

� put_message_at

� cancel_timed_message

Please refer to [API] for a detailed description of these functions.

Please note that a task's message handler is allowed to forward/cancel a message to any task’s queues, but it is
only allowed to consume messages from its own queue.

If the scheduler is defined as a task in the host kernel, and the host kennel wants to send a message to a task in
the Scheduler, the host kernel is responsible for sending this message to the Scheduler. Likewise, sending a
message from a task within the Scheduler, the message must be transmitted to the task in the native kernel by
the Scheduler.

3.2.5 Timer Handling

BCHS makes use of timed events. This implies that a timer function needs to be ported such that the timer
functions used by the code are available.

The functions that need to be considered when porting are:

� timed_event_in
� timed_event_at
� cancel_timed_event
� get_time

Please refer to [API] for a detailed description of these functions.

3.2.6 Dynamic Memory Allocation Handling

BCHS makes use of dynamic memory allocation and de-allocation. The functions that need to be considered
when porting dynamic memory allocation are:

� pmalloc
� zpmalloc

� pfree

Please refer to [API] for a detailed description of these functions.

For simple targets (targets without any kernel) the pmalloc function can be ported to run directly on the hardware
without interfacing to a kernel. The pmalloc call is analogous to the malloc call defined in ANSI C – it asks for a
memory block of the indicated size. If the memory request can be successfully met, a pointer to the allocated
memory block is returned. If the request cannot be met the Scheduler or host kernel must ensure proper action,
e.g. restart the system.

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 9 of 33

Depending on the environment to which BCHS is ported, memory management can be implemented in different
ways. One way is to reuse the malloc call if such exists; in this case the porting is simply a matter of calling the
malloc function from within the pmalloc function. It must however be considered if memory allocation,
fragmentation etc. is sufficiently efficiently implemented for real time systems. If this is not the case another way
is then to use pre-allocated memory with memory allocated from a set of pools. If pre-allocated memory is used
for pmalloc it must be assured that sufficient memory is allocated in the pools. The major loss using pool base

Scheduler API

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

memory is the inability to handle requests for arbitrary-sized memory blocks and an inevitable overhead of
memory allocated.

Memory claimed with pmalloc must be freed with a call to pfree. pfree must return the previously allocated
memory to the system for reuse. Again, if pmalloc is implemented via a call to malloc porting the pfree is a very
simple task of simply mapping the pfree function to standard free.

The only difference between the pmalloc - and the zpmalloc function is that zpmalloc also sets the obtained
memory bytes to zeroes.

3.2.7 Exception Handling

Please note that the BCHS component does not implement any exception handling for abnormal situations
(except for Bluetooth® protocol exception handling). This implies that any exception handling must be part of the
Scheduler or host kernel, e.g. memory exhaustion must be properly handled by the Scheduler or the host kernel.

The action to take when an exception arises must be determined in the Scheduler or in the host kernel. Typical
actions may be to rewind the system to a known secure position or simply restart the system.

In the Scheduler examples any serious exception that may arise will initiate a call to the panic function, which can
be found in the panic.c file. Situations that may lead to a panic function call are defined in the panic.c file.
Examples are if the system runs out of memory, trying to send a message to an unknown task id or too many
messages are put on queue.

In BCHS the panic function will only be called from:

• YABCSP (in txmsg.c), if a received message is larger than its allowed maximum

• HcCom.c, if it receivs an unknown primitive or signal, from one of the Scheduler tasks. Please note that
Hccom.c is only called in the RFCOMM build

• buffer.c, if there is some buffer congestion. Please note that buffer.c is only called if the HCI build is
used

3.2.8 Controlled Shut Down

BCHS includes an optional possibility to close down all tasks in a graceful manner; i.e. all allocated resources are
de-allocated and all messages on the tasks input queue are released. The feature is optional and includes using
the compiler switch ENABLE_SHUTDOWN. In environments where the target has full control of all resources or
in OS systems where BCHS runs as a task in that OS, and the OS releases all task resources when the task is
terminated, it may not be necessary to implement the close down feature. In case BCHS needs to be re-initialised
due to e.g. a BC chip reset, it is necessary to do a BCHS shut down followed by an initialisation of BCHS. It is not
enough just initialise BCHS again as this may result in memory leaks.

If the ENABLE_SHUTDOWN switch is defined all profile managers will include a de-initialisation function. If other
tasks are added during the porting these may also have to define a de-initialisation function. The scheduler can
call the de-initialisation functions during close down. The de-initialisation functions are defined in the tasks.c file;
any additional tasks that may have been added during the porting also need to be defined in the tasks files. In the
porting examples provided with BCHS it is necessary to shut down BCHS using the de-initialisation functions to
prevent memory leaks. Please note that only the Windows and ARM stand-alone scheduler examples include the
shut down feature.

Before calling any of the de-initialisation functions the scheduler must:

� ensure that no more messages are put on the task input queues

� move all timed messages (from the put_message_in and put_message_at functions) to the tasks input
queue

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 10 of 33

The scheduler should then call all the task de-initialisation functions in sequence. The tasks will empty the input
queue and cancel timed events (from the timed_event_in and timed_event_at functions) and allocated data. If
the tasks do not cancel all timed events it is up to the scheduler to cancel and de-allocate the remaining timed
events. The scheduler must also assure that any data pointed to by the mv pointer (in the timed_event_in and
timed_event_at functions) is de-allocated using the pfree() function.

Scheduler API

An example showing the use of shut down can be found in the Windows or ARM audio gateway demo.

The functionality needed in the application layer after the scheduler loop is terminated is:

Note th
the agd

bchs-gu

if shut down is activated
{

• Exit scheduler loop, sched_stop()
• Stop the uart driver, UartDrv_Stop()
• Remove any messages in the abcsp layer calling abcsp_deinit()
• Transfer timed messages to the task input queue, let the scheduler call the task de-

initialisation functions and remove any remaining timed events and de-allocate any data
associated with the timed event, sched_task_deinit()

}
_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

at the close down event is manually generated by the user and handing of the user event is included in
emoapp.c file.

-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 11 of 33

Persistent Memory Access

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

4 Persistent Memory Access
BCHS includes link key management for bonded devices. In order to preserve the link keys when devices are
powered off, BCHS must have access to persistent memory where the link keys can be stored and maintained.
The security manager in BCHS calls the function:

� scDbRead

� scDbWrite

which can be found in the sc_db.c file. For a more thorough description of how to port these functions, please
refer to the BCHS Security API, see BCHS-API-003_SecurityApi.pdf.

The scDbRead function is used to read the link key of a stored device. If the specified device does not exist, a
NULL pointer is returned. To store a key of a new device or replace/update an exiting key, the function scDbWrite
is used.

It must be noted that BCHS can execute without access to persistent storage but with a simple function stub for
the read and write function. In this case of course it is not possible to retain the link keys in between sessions
where the system has been reset, e.g. power off.

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 12 of 33

Lower layer UART interface

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

5 Lower Layer UART Interface
Since the Bluetooth® protocol stack is divided into a part residing on host (BCHS) and a part residing on the
BlueCore (Bluetooth® Core stack), a communication media and protocol between the processes running on host
and in the BlueCore is required. The communication protocol provided by BCHS is a version of the BCSP
protocol called YABCSP. Detailed information about YABCSP can be found in [YABCSP].

BCSP defines logical channels, which can be used for routing of signals between the host software and the
software in the BlueCore. In the RFCOMM build model, all Bluetooth® protocol stack layers up to and including
RFCOMM and SDP reside in the BlueCore. Only the Profile Managers (and thus also the Scheduler) must be
executed in the host processor. In the HCI build model the Bluetooth® Core stack is located on the host platform
and is therefore the proxy interface upper layer.

 Profile Managers

Proxy

ABCSP Upper

ABCSP Core

ABCSP Lower

UART

 Figure 3: RFCOMM build model

Profile Managers

Bluetooth Core Stack

Proxy

ABCSP Upper

ABCSP Core

ABCSP Lower

UART

 Figure 4: HCI build model

In the following section it will be described which part of the lower layers that must be considered when the
Scheduler API is ported by implementing a dedicated Scheduler mechanism for BCHS, which is the case for the
examples provided with BCHS.

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 13 of 33

Lower layer UART interface

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

5.1 Porting the UART Interface

If the Scheduler API is ported, by implementing a dedicated Scheduler mechanism for BCHS, the porting job of
YABCSP is simplified, because then only the lower layer, which defines the UART interface, and the initialization
function for YABCSP, must be considered. The functions that must be considered is listed below:

� abcsp_init

� UartDrv_Configure

� UartDrv_RegisterHandlers

� UartDrv_Start

� UartDrv_Rx

� UartDrv_Tx

5.1.1 abcsp_init

The abcsp_init function is used to initialise the YABCSP library. The abcsp_init function must be called from the
main function before the Scheduler initialisation function, because abcsp_init generates some background
interrupt requests that otherwise could be lost, and before the blocking Scheduler function.

5.1.2 UartDrv_Configure

The UartDrv_Configure function must be implemented by the developer and must be used to initialise the UART
driver. An example of how this can be done, for the Windows platform can be found in the SerialCom.c file.

5.1.3 UartDrv_RegisterHandlers

In the porting examples provided with BCHS, the UartDrv_RegisterHandlers function is used to register the
background interrupts used for the UART communication driver, and is called from the main function. The UART
driver must use:

� Background interrupt number 1, to inform the Scheduler that data is available in the UART RX buffer.
This must be done, by calling the function bg_int1

� Background interrupt number 2, to inform the Scheduler that UART data needs to be sent to the UART
TX buffer or to check if an ACK needs to be send. This must be done, by calling the function bg_int2

These two background interrupt must be registered by the UartDrv_RegisterHandlers function by calling:

� register_bg_int(1, UartDrv_Rx)

� register_bg_int(2, abcsp_pumptxmsgsOut)

Please note that the processing of data internally in the YABCSP is controlled by the abcsp_pumptxmsgsOut.
The bg_int2 interrupt is issued by the function called abcsp_req_pumptxmsgs from the YABCSP. The
abcsp_req_pumptxmsgs must not call the abcsp_pumptxmsgsOut directly. The abcsp_req_pumptxmsgs is called
automatically when the UartDrv_Tx is called or UartDrv_RX is called. This is because the YABCSP library needs
to make some internal checks and prioritise the messages that should be sent.

If the ROM version of the chip is used, the UART driver must also use:

� Background interrupt number 6, to inform the Scheduler that YABCSP needs to be restarted. This must
be done, by calling the function bg_int6

This background interrupt must be registered by the UartDrv_RegisterHandlers function by calling:

� register_bg_int(6, abcsp_restart);

5.1.4 UartDrv_Start

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 14 of 33

The UartDrv_Start function is only strictly necessary if the ROM version of the chip is used and it needs to
change the baud rate doing initialisation. The function must be implemented by the developer and must be used

Lower layer UART interface

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

to start/restart the UART driver. An example of how this can be done, for the Windows platform can be found in
the SerialCom.c file, and in the bccmdBootStrap.c file. An example is given of how this function is used to restart
the UART driver with another baud rate.

5.1.5 UartDrv_RX

The YABCSP is not re-entered, so when the UART driver receives a message from the Bluetooth Core stack it
must inform the Scheduler by calling the bg_int1 function. When the Scheduler is informed it calls the
UartDrv_RX function, see section 5.1.2.

UartDrv_RX must take the available bytes out from the UART RX buffer and push them to the YABCSP library by
calling the function abcsp_uart_deliverbytes. The function abcsp_uart_deliverbytes is defined in the abcsp.h file,
and returns the number of consumed bytes.

If bytes are still available in the UART RX buffer after abcsp_uart_deliverbytes is called, the UartDrv_RX function
must inform the Scheduler by calling the bg_int1 function.

5.1.6 UartDrv_TX

The UartDrv_TX is used to push a message onto the UART TX buffer. UartDrv_TX is called from the
ABCSP_UART_SENDBYTES macro (see the config_txmsg.h file) and is defined as:

 bool_t UartDrv_Tx(char *buf, uint16_t num_to_send, uint16_t *num_send)

UartDrv_TX must push num_to_send bytes from buf to the UART TX buffer. If the UART TX buffer is full it must
return FALSE and num_send must be 0. If the bytes are pushed to the TX buffer the function must return TRUE.

5.2 Proxy Related Parameter Configuration

In the RFCOMM build the number of messages that can be sent to BlueCore must be controlled in order not to
flood the chip with messages. The BCHS file HcCom.h have defines for:

1. TX CREDIT ISSUE THRESHOLD, which is how often the BlueCore will issue a credit update to the
host. I.e. when the number of primitives sent to the BlueCore passes this threshold, a credit update will
be issued to host indicating the number of consumed primitives.

2. TX CREDIT ISSUE TIMER defines the time between checks that the number of unconsumed primitives
in the BlueCore has changed. If the number has changed, a credit update will be issued to the host
indicating the number of consumed primitives since last credit update.

A credit update will be issued when one of the conditions are fulfilled, which ever appears first. The
rfc_build_proxy.h file contains an algorithm for automatic calculation of these parameters. If, however it is
necessary to adjust these parameters it can be done simply by changing the mentioned defines. The reason for
adjusting the proxy credit setting is that this may influence the overall data throughput. Please note that setting
the TX CREDIT ISSUE TIMER to 0 disables the timer.

The purpose of the proxy for the HCI build is two fold:

1. ensure identical interfaces as for RFCOMM build.

2. map message data to/from the message block structure, i.e. allow use of segmented data in the
Bluetooth Core stack.

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 15 of 33

Upper layer interface

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

6 Upper Layer Interface
Usually the Scheduler will run as a separate process in the host kernel. If other processes are defined and
running in the native kernel and they need to communicate with any component running in the Scheduler, clearly
an interface between the application layer (running in the native kernel) and the Scheduler must be made. In a
porting according to porting method 1 (see section 3.1) this may not be required. It is possible to implement the
application layer to run in the Scheduler as well, but this is normally not the case, as BCHS typically is integrated
into an existing product where the application layer must be reused.

The upper layer interface (APP2BCHS in Figure 1) is responsible for communication between tasks executing in
the host kernel and tasks executing in the Scheduler. Consequently, this interface is only needed if the Scheduler
API is ported, by implementing a dedicated Scheduler mechanism for BCHS, and if the application is executed in
the host environment. Hereby downstream and upstream messages must be treated as described in the following
subsections.

6.1 Downstream Messages (Host to Scheduler)

When messages are sent from an application task in the host kernel destined to a task in the Scheduler,
APP2BCHS must intercept these messages and inform the Scheduler that an incoming message is waiting. The
incoming message can be retrieved from the Scheduler dedicated call in the sched function or through use of the
background interrupt mechanism.

The function used to retrieve the message from the host kernel must ensure that the format for the messages in
the Scheduler complies with the format defined in the Profile Manager API documents. As mentioned in 3.2.2
each Scheduler task has its own message queue. The retrieved message can be put on the Scheduler task
queue using the put_message function call. The put_message function has a parameter, which identifies the task
queue on which the message must be stored (see [API]). The queue identifier can be included in the host
message or a conversion may take place in APP2BCHS.

6.2 Upstream Messages (Scheduler to Host)

Messages sent from a Scheduler task to a host environment task are identified based upon the destination queue
identifier. When the Scheduler put_message identifies a message for this particular queue, the message is
intercepted and routed to the host kernel. Another possibility is to let each host task be represented in
APP2BCHS with a pseudo task handler for these tasks. The Scheduler will call the task handler function when a
message is stored on the queue. The task handler must then consume the Scheduler message and pass it on to
the right host kernel task using the host kernel message send function.

Depending on the host environment it may be possible to map the Scheduler message directly using the queue
identifier. If this is not possible the message must be mapped in APP2BCHS.

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 16 of 33

Audio Configuration

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

7 Audio Configuration
SCO data can either be routed over the PCM port or over BSCP.

7.1.1 Audio over PCM

In order to map SCO data over the PCM port set MAP_SCO_PCM PSKey to TRUE. Note that when SCO data is
mapped over the PCM port, only one SCO connection is allowed.

7.1.2 Audio over BCSP

In order to send and receive audio over BCSP the MAP_SCO_PCM PSKey must be set to FALSE and the
application must register a SCO service function. The SCO service function must be registered when the
application receives an audio confirm/indication signal with result code SUCCESS and the SCO handle included.

The SCO service is registered by calling:

bool_t RegisterScoHandle(uint16_t theScoHandle, ScoHandlerFuncType theFunctionPtr)

which returns a TRUE if the call is successful. The theScoHandle is the identity of the SCO handle, which is
returned as a parameter in the audio confirm/indication signal. The theFunctionPtr must be the name of the
function, which the received HCI SCO data packets are sent to. This function must be defined as illustrated
below:

void nameOfFunction(char * theData)

where theData is the HCI SCO data packet, see Figure 5. For more information about HCI SCO data packet
refer to [BT11] part H:1, section 4.4.3.

Figure 5: HCI SCO data packet

If the SCO service is registered with success, SCO data can be sent to the peer device by calling the function:

void SendScoData(char * theData)

The parameter theData must be a HCI SCO data packet, where the Connection Handle again is the identity of
the SCO handle. Data Total Length is the length of SCO data giving in bytes, and Data is the SCO data. The
SCO data format must be the same format as the incoming HCI SCO data packet.

The functions registerScoHandle and SendScoData are defined in AudioBCSP.h. In UsrConfig.h it is
possible to set the voice parameter, which controls all the various settings for SCO connections. These settings
apply to all SCO connections, and cannot be set individually.

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 17 of 33

NOTE: when audio is transferred as a 16 bit data stream, CSR recommends a minimum of 460.8 kb/s. For 2 or 3
simultaneous SCO links, CSR recommends a minimum of 921.6 kb/s. For 8 bit data streams, the baud rate
requirements can be halved.

Porting example for Nucleus PLUS

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

Appendix A : Porting Example for Nucleus PLUS

A1. Introduction
BlueCore™ Host Software (BCHS) is platform independent and highly portable. The main porting job in porting
BCHS to a new platform is porting the virtual kernel API, the Scheduler API.

The porting example described in this appendix is based on the Nucleus PLUS which is a real-time preemptive,
multitasking kernel designed for time-critical embedded applications. More information on Nucleus PLUS can be
found at the http://www.acceleratedtechnology.com web site, and the Scheduler example files can be found in
Drivers/Scheduler/ARM/Nucleus (path relative to installation path).

The information contained in this porting guide example is intended for system architects and system designers
designing a system where BCHS must be included as a system component. Besides having in-depth knowledge
of C-programming and real-time programming, knowledge of the Nucleus PLUS kernel system is required.

A2. Overview
A very central point with BCHS is that it is designed to be portable.

This document is a user guide in:

� Porting the Scheduler API by implementing a new Scheduler, which takes advantages of some of the

functions offered by the Nucleus PLUS kernel

� Porting the UART interface for BlueCore™ communication to the Nucleus PLUS kernel, by using the
implemented Scheduler

In this porting example it has been decided that the Scheduler will run as a separate task in the Nucleus PLUS
kernel, because BCHS typically is integrated into an existing product where the application layer must be reused,
as illustrated on Figure 6.

Nucleus PLUS kernel

Scheduler Application

Figure 6: The Scheduler and the Application run as separate tasks in the Nucleus PLUS kernel

In order to communicate between the Nucleus tasks the Queue mechanism provided by the Nucleus PLUS
kernel is used. It has been decided that each Nucleus task only has one dedicated Queue, e.g. if the Application
task needs to send a message to the Scheduler task it has to put it on the queue dedicated to the Scheduler task,
and vice versa. For more information about the Nucleus Queues, please refer to [NU].

The Application_Initialize function executed by Nucleus PLUS prior to starting the system is responsible for
defining the initial application environment. In this case the Application_Initialize function creates a system
memory pool, two tasks (respectively the Scheduler - and the Application task), two queues (one dedicated to the
Scheduler - and the other to the Application task), and finally it creates a High-Level Interrupt Service Routine
(HISR).

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 18 of 33

http://www.acceleratedtechnology.com/

Porting example for Nucleus PLUS

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

The Application_Initialize function will look like this:

void Application_Initialize(void *first_available_memory)
{
 Create a system memory pool
 Allocate the memory for the Scheduler task
 Create the Scheduler task
 Allocate memory for the Scheduler queue
 Create the Scheduler queue
 Allocate the memory for the Application task
 Create the Application task
 Allocate memory for the Application queue
 Create the Application queue
 Allocate the memory for the HISR control block
 Create the HISR
}

Please note that in Nucleus PLUS it is possible to create multiple memory pools (could be one for each task), but
in order to minimize the overhead it has been decided to use a common system memory.

After the Nucleus Application_Initialize function has defined the application environment, it has to execute the
nucleus task dedicated to the Scheduler and to the Application. In the following chapters an example is given of
how these tasks can be implemented in order to port BCHS to the Nucleus PLUS kernel OS.

A3. The Scheduler
This chapter gives an example of how to port the Scheduler API to Nucleus PLUS kernel. Before reading the
example it is recommended that [API] is read thoroughly, as it outlines a description of some of the Scheduler’s
interfaces.

Basically the porting of the Scheduler API can be done in two different ways: by using the native kernel’s
scheduling mechanism to provide the Scheduler API or by implementing a dedicated Scheduler mechanism for
BCHS.

In this porting example the Scheduler API is provided by implementing a dedicated Scheduler. The Scheduler will
take advantages of some of the Nucleus PLUS functions, defined in [NU].

A3.1 The Main Function

The main function of the Nucleus Scheduler task looks like this:

The Ua
backgro
protoco

Where
function

bchs-gu

Please
function
interrup
becaus
nucleusSchedTask(UNSIGNED argc, VOID *argv)
{
 UartDrv_Configure
 UartDrv_RegisterHandlers
 init_sched
 abcsp_init
 sched

}

rtDrv_Configure and the UartDrv_RegisterHandlers functions are called to initialize and register some
und interrupts for the UART driver. The serial protocol that BCHS provides is a version of the BCSP
l called YABCSP. For more information of how to port these functions, refer to chapter A3.6.

init_sched function initializes the scheduler message queues, abcsp_init initializes ABCSP, and the sched
 is in the primary code structure in the Scheduler.

-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 19 of 33

notice that the abcsp_init function must be called after the init_sched function and before the sched
. The reason why it must be called after the init_sched function is because it generates some background
t requests that could be lost otherwise, and the reason why it must be called before the sched function is
e it enters an endless loop and therefore never returns.

Porting example for Nucleus PLUS

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

A3.2 The Scheduler Function

The primary code structure in the Scheduler is a set of tasks passing messages to each other. Each task has
only one queue attached. The scheduler may place messages on any queue, but may only consume messages
from its own queue.

The tasks defined in this example are all defined in the task.h/c file. These two files also contain the queue
identifiers for the different tasks together with each tasks initialisation and handler functions. If a task’s
initialisation function is NULL defined, it is not used. BCHS is supplied with multiple profiles. Depending on the
application it may be feasible to include/exclude one or more of the profile layers. To exclude a profile layer, use
the EXCLUDE_XXX_MODULE define. For more information about which modules are defined, refer to the BCHS
user guide document [USERG].

Please notice that in the task.h file, the application tasks queue is defined as an external task queue, because it
has been decided that the application must run in its own Nucleus task, as explained in chapter A2.

The sched function contains the Scheduler functionality and will not return (because it enters an endless loop,
which schedules the BCHS tasks according to the round-robin principle), after it has called the internal Scheduler
tasks initialization functions. The basic functionality is:

call each Scheduler task’s initialization function
endless loop
{
 if there is a message on one of the internal task queues
 {
 find a message on a task queue, and call its handler function
 }

 if there are NO messages on the internal Scheduler queues
 {
 Nucleus is allowed to suspend the Scheduler task if its Nucleus queue is empty.
 }
 else
 {
 Nucleus is NOT allowed to suspend its Nucleus queue if it is empty
 }

 if there is a message on the Nucleus queue
 {
 service it. (It can be a message from the application task, a timed event, or a background IRQ
 }
}

Please notice that the Scheduler is implemented as a blocking function, it is also possible to implement it as non-
blocking.

The essential when designing the Scheduler loop as a blocking function, is that it only can be blocked one place
in the loop. The purpose of this is that the Scheduler then can remain blocked until an external event occurs.

In this porting example, this has been achieved by making all external events, queue dependent. It is illustrated in
the pseudo code that the Scheduler will be suspended/blocked if there are no messages on the internal
Scheduler queues and there are no messages on its dedicated Nucleus queue. If the Scheduler is suspended it
will be suspended until a message is available on its Nucleus queue, e.g. a message from the application task, a
timed event or a background interrupt.

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 20 of 33

Porting example for Nucleus PLUS

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

A3.3 Timer Handling

One of the major methods of invoking code under the Scheduler is to use timed events. A timed event is a
function called after a particular system time. The functions that need to be considered when porting timed events
are:

� timed_event_in
� timed_event_at
� cancel_timed_event
� get_time

Please refer to [API] for a detailed description of these functions, and for the example function, please refer to
sched.c and sched_private.h.

A3.3.1 Design Overview of Timer Handling

This porting example takes advantage of the programmable timers that are provided by the Nucleus PLUS
kernel. This decision was made because these timers can be created and deleted dynamically. There is no
preset limit on the number of timers an application may have. Another feature with these timers is, that an Id is
supplied to a user-supply High-Level interrupt routine. For a detailed description of the Nucleus PLUS timers,
please refer to [NU].

In this design the user-supply interrupt routine is just sending a message, containing the timer Id and a message
type, to the Scheduler’s Nucleus queue. This is done in order to keep the Scheduler re-entrant save.

The following sections describe how the Scheduler timed events are designed. Basically what happens is that
every time the Scheduler needs to use a timed event, it saves the giving parameters on an internal queue and
create a new Nucleus PLUS timer. Each of these timers uses the same user-supply expiration routine, which is
executed as a high-level interrupt service routine called NucleusTimerExpirationRoutine. This service routine
builds a Nucleus PLUS message, containing the supplied timer Id, the message identifier defined as
TIMEOUT_EVENT (which helps the Scheduler to identify that a timeout interrupt has occurred) and places it at
the back of the Nucleus Queue, dedicated to the scheduler.

A timer Id is used in a message send to the Nucleus queue, which can be used to help the application to identify
timers using the same expirations routine.

A3.3.2 The Scheduler Timed Event Queue

In order to keep track of the timed events the Scheduler internally holds a single timer link list. The timer link list is
defined in sched_private.h as a structure called TimedMessageType, which consists of six elements:

� An unsigned integer fniarg, holding the fniarg parameter obtained from the timed_event_in or
timed_event_at function.

� A void pointer fnvarg, holding the * fnvarg parameter obtained from the timed_event_in or
timed_event_at function.

� A void pointer (* eventFunction) (uint16_t, void *), holding the function that the Scheduler must call when
the timer has expired. This parameter is obtained from the timed_event_in or timed_event_at function.

� An unique timer identifier id, which is used to keep track of the timed event, or can be used to prevent a
timed event.

� A TimedEventType pointer next, pointing at the next message on the list. If it is the last timed event on
the list, the pointer value is NULL.

� A NU_TIMER pointer, holding the Nucleus PLUS user-supplied timer control block.

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 21 of 33

Porting example for Nucleus PLUS

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

A3.3.3 timed_event_in

The timed_event_in function asks the Scheduler to call the function fn(fniarg, fnvarg) after at least period delay
has passed. The function allocates memory for the new timer structure, the parameters in the structure are set, a
new Nucleus PLUS timer is created, and the new timer structure is placed on the internal timer link list. The
function returns the timer identifier tid, which can be used to prevent this timed event by calling the
cancel_timed_event function, see section A3.3.5. The timed_event_in function looks like this:

tid timed_event_in(TIME delay, void (*fn) (uint16_t, void *), uint16_t fniarg, void *fnvarg)
{
 convert the given delay from microseconds to timer ticks
 call the function create_timer, which does the actual work.
 return the timer identifier tid obtain from the function create_timer
}

Please note that the delay is stated in microseconds and that the Nucleus PLUS timers use timer ticks. A tick is
the basic unit of time in all Nucleus PLUS facilities, where each tick corresponds to a single hardware interrupt.
The amount of actual time a tick represents is usually user-programmable.

As illustrated in the pseudo code, the create_timer function does the actual work of timed_event_in, and looks
like this:

 tid create_timer(UNSIGNED initialtime, void (*fn) (uint16_t, void *), uint16_t fniarg, void *fnvarg)
{
 allocate the memory for the new timer structure.
 obtain an unused timer identifier, tid
 try to create a new Nucleus PLUS timer and ask it to:
 call the function NucleusTimerExpirationRoutine after it expires,
 and supply the obtained timer identifier.

 if the Nucleus timer is created
 {
 set the parameter in the new timer structure and place it on the timer’s internal timer link list
 return the timer identifier tid
 }
 else
 {
 free the memory which has just been allocated for the new timer structure
 an exception has occurred, call the panic function
 }
}

A3.3.4 timed_event_at

The timed_event_at function is similar to the timed_event_in function. The only difference is that instead of
asking the Scheduler to call a function after a period has passed, it is asked to call a function at, or after, a
particular system time.

 tid timed_event_at(TIME when, void (*fn) (uint16_t, void *), uint16_t fniarg, void *fnvarg)
{
 calculate difference in timer ticks, between when and the current value of the system clock
 call the function create_timer, which does the actual work.
 return the timer identifier tid obtained from the function create_timer
}

Please note that the when is stated in microseconds and that the Nucleus PLUS timers use timer ticks.

(The timed_event_at function is provided for completeness, and finds little use.)

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 22 of 33

Porting example for Nucleus PLUS

A3.3.5 cancel_timed_event

The cancel_timed_event function asks the Scheduler to attempt to prevent the execution of the timed event,
identified with the eventid. The cancel_timed_event function searching through the linked list of timers, in order to
see if the given eventid parameter, match any of the timer id contained in the list. If it finds a timer Id that
matches, it prevents the execution of this timed event by: deleting the Nucleus timer, freeing the memory
allocated for it, and finally by removing the timer structure from the linked list. The cancel_timed_event function
looks like this:

As illus
event, i

A3.3.6

The ge

A3.4

The Sc
Schedu
porting

�

�

�

�

�

�

Please
sched.c

bchs-gu

bool_t cancel_timed_event(tid eventid, uint16_t *pmi, void **pmv)
{
 go through the internal timer link list
 {
 if event id equals the timer id in list
 {
 delete the Nucleus timer
 remove the timer id from the link list and update the list
 free the memory allocated for it
 return TRUE
 }
 }
 return FALSE
}
_

äì
É
`
ç
êÉ

=e
ç
ëí=p

t

trated the cancel_timed_event function return TRUE if it succeed to prevent the execution of the timed
f not it return FALSE.

get_time

t_time function must return the current system time in microseconds and looks like this:

 TIME get_time()
{
retrieve the current value of the Nucleus system timer tick counter
convert the obtained value to microseconds and return it
}

Function for Message Passing

heduler is responsible for handling message passing between the Scheduler tasks as well as between the
ler and other Nucleus tasks, such as the Application task. The functions that need to be considered when
message passing are:

put_message

cancel_message

get_message

put_message_in

put_message_at

cancel_timed_message

refer to [API] for a detailed description of these functions, and for the example functions, please refer to
 and sched_private.h.

-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 23 of 33

Porting example for Nucleus PLUS

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

A3.4.1 The Schedulers Message Queues

As described, the Scheduler consists of a set of tasks passing messages to each other, where each Scheduler
task is attached to one message queue, as illustrated in Figure 7.

q1 q2

Task 1

Task 2

Messages

Figure 7: Each Scheduler task is attached to one message queue

The queue messages are held as a FIFO queue, so there is no hard limit to the length of a queue. However,
each message consumes memory, thus task implementations prevent messages to build up in the queues. In
sched_private.h a queue message is simply defined as a structure called MessageQueueEntryType, which
consists of four elements:

� An unsigned integer event, holding the mi parameter obtained from the put_message functions

� A void pointer message, holding the *mv parameter obtained from the put_message functions

� A unique message identifier id, which can be used to prevent delivery of a message

� A MessageQueueEntryType pointer next, pointing at the next message in the queue. If it is the last
message in the queue, the pointer value is NULL

A3.4.2 put_message

The put_message function is used to place a message either to one of the Scheduler message queues, or to the
external Nucleus queue, e.g. the queue dedicated to the Application task. If the message is placed on one of the
Scheduler message queues, the memory for the new message structure is allocated, the parameters in the
structure are set, and the message is placed on the back of the message queue q. The put_message function
returns the message identifier msgid, which can be used with the cancel_message, refer to section A3.4.3. The
put_message function will look like this:

 msgid put_message(qid q, uint16_t mi, void *mv)
{
 obtain an unused message identifier, msgid
 call the function do_put_message, which does the actual work
 return the message identifier msgid
}

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 24 of 33

Porting example for Nucleus PLUS

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

As illustrated, the do_put_message function does the actual work of the put_message. It accepts the message
identifier to be used in its id argument and will look like this:

static void do_put_message(qid q, uint16_t mi, void *mv, msgid id)
{
 if the message queue q is one of the Scheduler message queues
 {
 if q is invalid
 {
 an exception has occurred, call the panic function
 }
 allocate and set the memory for the new message structure. Place it on the back of the

 message queue q. The number of messages on the Scheduler task queues is increased by one
 }
 else the message queue q must refer to the external Nucleus queue dedicated to the application task
 {
 try to place the message at the back of the specified Nucleus queue. This service must
 return immediately regardless of whether or not the request can be satisfied.

 if the request could not be satisfied
 {
 an exception has occurred, call the panic function
 }
 }
}

The argument for letting the do_put_message function do the actual work, is that the put_message_in, see
section A3.4.5, and put_message_at, see section A3.4.6, functions take advantage of this functionality indirectly.

A3.4.3 cancel_message

The cancel_message attempts to prevent delivery of the message with message identifier mid, which was
previously sent onto the Scheduler message queue q. If the message is caught in time the function returns
TRUE, otherwise it returns FALSE.

 bool_t cancel_message(qid q, msgid mid, uint16_t *pmi, void **pmv)
{
 if the message queue q is one of the Scheduler message queues
 {
 if q is invalid
 {
 an exception has occurred, call the panic function
 }
 try to find the message with message identifier mid, in the message queue q

 if the message in found
 {
 set the pmi and pmv parameters
 the number of messages on the Scheduler task queues is reduced by one
 remove the message from the message queue q, and free the memory allocated for it
 the message identified with mid was caught in time, return TRUE.
 }
 else
 {
 the message was not caught in time, return FALSE
 }
 }
 else
 {
 the message queue q is not one of the Scheduler queues, return FALSE.
 }
}

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 25 of 33

Porting example for Nucleus PLUS

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

Please note that if the cancel_message function obtains a message from its queue, it must free the memory
allocated for the message structure, see A3.4.2. Please also note that the canceller must pfree any pmv
message storage.

A3.4.4 get_message

The get_message function is used by a Scheduler task to obtain messages from its own message queue q. If the
calling task is invalid, or tries to obtain a message from a message queue that is not dedicated to it, an exception
has occurred and the panic function is called, see panic.h/c. If these sanity checks pass, the get_message
function will try to obtain the first message from its message queue, which is a First-In-First-Out (FIFO) queue. If
a message is obtained from the message queue the pmi and pmi parameters are set, the message is removed
from the queue, and the function returns TRUE. Otherwise the function returns FALSE. The get_message
function will look like this:

bool_t get_message(qid q, uint16_t *pmi, void **pmv)
{
 if the message queue q is one of the Scheduler task queues
 {
 if q is invalid
 {
 an exception has occurred, call the panic function
 }
 if the calling task does not own q
 {
 an exception has occurred, call the panic function
 }
 try to take a message out of the message queue q
 if a message has taken from the message queue q
 {
 set the pmi and pmv parameters
 the number of messages on the Scheduler tasks queues is reduced by one
 remove the message from the message queue q, and free the memory allocated for it
 a message has been obtained from the message queue q, return TRUE.
 }
 else
 {
 there were no messages obtained from the message queue q, return FALSE.
 }
 }
 else
 {
 an exception has occurred, call the panic function
 }
}

Please note that if the get_message function obtains a message from its queue, it must free the memory
allocated for the message structure, see section A3.4.2. Furthermore, remember that the Scheduler has no
intelligence of how callers use the pmv argument. If a coder uses pmalloc for the pmv part of a message and the
message is read without picking it up:

get_message(A_QID, &foo, (void**) NULL);

then the pmalloc’ed memory will leak.

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 26 of 33

Porting example for Nucleus PLUS

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

A3.4.5 put_message_in

The put_message_in function asks the Scheduler to deliver the message after at least period delay has passed.
The function is actually just a combination of the functions: timed_event_in and put_message and looks like this:

msgid put_message_in(TIME delay, qid q, uint16_t mi, void *mv)
{
 allocate memory for the TimedMessageType structure and initialize it.
 call the function timed_event_in, so that the deliver_timed_message function is called after at
 least period delay has past.
 return a unique message identifier, obtained from the timed_event_in function
}

What the put_message_in function does is that it allocates memory for a TimedMessageType structure, which is
defined in sched_private.h. The TimedMessageType structure consists of four elements:

� An unsigned integer event, used for holding the mi parameter

� A void pointer message, used for holding the *mv parameter

� A queue identifier q, used for holding the q parameter

� A timer identifier id, used for holding the timer id returned by the timed_event_in function

After the new allocated TimedMessageType structure is initialized it calls the timed_event_in function and asks it
to call the function deliver_timed_message() after at least period delay has passed. As argument to the
deliver_timed_message function the fniarg parameter is set to 0 and the fnvarg parameter is set to the allocated
new TimedMessageType structure. The timed_event_in function returns an unique timer identifier which the
put_message_in function returns as the message identifier msgid, which can be used with the
cancel_timed_message, please refer to section A3.4.7.

When the deliver_timed_message function is called, this function just calls the

do_put_message(qid q, uint16_t mi, void *mv, msgid id)

function, see section A3.4.2, in order to let it do all the work. The parameter given to the function is obtained from
the TimedMessageType structure which is past to the deliver_timed_message function as the fnvarg parameter.
Finally the TimedMessageType structure is free in order to prevent a memory leak. The deliver_timed_message
function looks like this:

static void deliver_timed_message(uint16_t event, void *message)
{
 cast the void message pointer to a TimedMessageType type
 call the do_put_message
 pfree(timedMessage) to prevent a memory leak
}

A3.4.6 put_message_at

The put_message_at - is similar to the put_message_in function. The only difference is that instead of delivering
the message after a period has passed it delivers the message at or after a specific system time when has
passed, by calling the timed_event_at - instead of the timed_event_in function. The put_message_at function will
look like this:

 msgid put_message_at(TIME when, qid q, uint16_t mi, void *mv)
{
 allocate memory for the TimedMessageType structure and initialize it.
 call the function timed_event_at, so that the deliver_timed_message function is called after a
 period when has past.
 return a unique message identifier obtained from the timed_event_at function
}

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 27 of 33

(The put_message_at function is provided for completeness, and finds little use.)

Porting example for Nucleus PLUS

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

A3.4.7 cancel_timed_message

The cancel_timed_message function can be used to attempt to prevent delivery of a message with identifier mid,
which is previously scheduled to be delivered to message queue q. Because the previous timed message
request is a combination of the timed_event_in/at function call and the put_message function call, the message
that needs to be cancelled can either be placed in the linked list of timers, or it can be placed on the Scheduler
message queue q. This demands that the cancel_timed_message function first searches for the message in the
linked list of timers by calling the cancel_timed_event function, and if this function returns FALSE, it then has to
search for the message in the Scheduler queue q, by calling the cancel_message function. If the message is
caught in time the function returns TRUE, otherwise it returns FALSE. The cancel_timed_message function looks
like this:

bool_t cancel_timed_message(qid q, msgid mid, uint16_t *pmi, void **pmv)
{
 call cancel_timed_event function with id and function parameter
 if cancel_timed_event returns TRUE the message is found on the linked list of timers
 {
 set the pmi and pmv parameters
 the message identified with mid was caught in time
 free the memory allocated

return TRUE.
 }
 else call cancel_message with id and function parameter
 {
 if cancel_message function return TRUE the message is found on the Scheduler queue q
 {
 return TRUE
 }
 The message has not caught in time return FALSE
 }

A3.5 Memory Handling

The functions that need to be considered when porting the memory management are:

� pmalloc
� zpmalloc
� pfree

Please refer to [API] for a detailed description of these functions, and for the example functions please refer to
pmalloc.c.

Depending on the environment to which BCHS is ported, memory management can be implemented in two
different ways:

1. Use pre-allocated memory with memory allocated from a set of pools. Hereby the pre-allocated memory
is used for pmalloc and the developer must assure that there is sufficient memory allocated in the pools.

2. Use a dynamic memory allocation scheme, so the pmalloc function is analogous to the malloc call
defined is ANSI C.

In this example the use of dynamic memory allocation and de-allocation are used, because it is estimated that
this scheme is sufficient efficiently implemented in the Nucleus PLUS kernel.

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 28 of 33

Porting example for Nucleus PLUS

A3.5.1 pmalloc

The pmalloc function tries to allocate a block of memory from the dynamic memory pool specified in the
Application_Initialize function. If allocation succeeds the function returns a pointer to the allocated memory,
otherwise an exception has occurred and the panic function with an error code is called. The pmalloc function
looks like this:

A3.5.

The z
set to

A3.5.

The p
funct

bchs-

void *pmalloc(uint32_t size)
{
 if size < MIN_ALLOCATE_MEMORY
 {
 size equal MIN_ALLOCATE_MEMORY
 }

allocate memory in Nucleus with the specified size, return status and a pointer to the allocated
memory block

 if allocation does not succeed
 {
 call panic with error code
 }
 return pointer to allocated memory block
}
_
äì
É
`
ç
êÉ

=e
ç

2 zpmalloc

pmalloc function is similar to the pmalloc function. The only difference is that the allocated memory block is
 zero. The zpmalloc function looks like this:

3

io

g

void *zpmalloc(uint32_t size)
{
 call the pmalloc function
 set the memory obtained to zero
 return pointer to allocated memory block
}

ëí=p

t

 pfree

free function returns the memory, which was previously allocated by either the pmalloc - or zpmalloc
n. The pfree function looks like this:

void pfree(void *ptr)
{
 if the ptr pointer != NULL deallocate the ptr pointer
}

u-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 29 of 33

Porting example for Nucleus PLUS

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

A3.6 The Lower Layer UART Interface

This chapter gives an example of how to port the UART interface for BlueCore™ communication to the Nucleus
PLUS kernel. The communication protocol provided by BCHS is a version of the BCSP protocol called ABCSP.
Detailed information about ABCSP can be found in [YABCSP].

Please note that the Nucleus PLUS serial driver is used in order to keep the example more generic. It has
however, been necessary to make minor modifications in order to adjust it for this purpose. The modifications are
explained in section A3.6.4. For more information about the Nucleus PLUS serial driver, please refer to
[NU_DRIVER].

A3.6.1 Providing the UART Driver API in the Scheduler

Because a Scheduler has been implemented in this porting example, the porting job for ABCSP is simplified. In
this case only the UART driver interface must be provided. The functions that need to be considered when
porting the UART interface in this example are:

� UartDrv_Configure
� UartDrv_RegisterHandlers
� UartDrv_TX
� UartDrv_RX

As regards the example function source code, please refer to uart.c and uart.h.

A3.6.2 UartDrv_Configure

The UartDrv_Configure function is called from the main function, see section A3.1 and is used to initialize the
communication port. For information of how to initialize the Nucleus PLUS serial driver, please refer to
[NU_DRIVER].

A3.6.3 UartDrv_RegisterHandleres

Seeing that the Scheduler is not re-entrant safe, foreground tasks, such as the UART communication drivers,
must not interrupt the Scheduler background job. Instead a mechanism must be implemented to inform the
background task that a foreground task needs attention. The functions that need consideration as to background
interrupt handling are:

� register_bg_int
� bg_intx, where x is the background interrupt number

Please note that only the background interrupt number 1, 2 and 6 are considered in this porting example,
because these are used by the UART communication driver for ABCSP. As regards the example function source
code please refer to bg_int.c and bg_int.h.

The UartDrv_RegisterHandlers function is called from the main function, see section A3.1, and is used to register
the background interrupts by calling register_bg_int, which defines the background interrupt number and the
function that needs to be called when the Scheduler receives this number. The UartDrv_RegisterHandlers
function will look like this:

 void UartDrv_RegisterHandlers(void)
{
 register_bg_int(1, UartDrv_Rx);
 register_bg_int(2, abcsp_pumptxmsgsOut);
#ifdef ROM_BUILD_ENABLE
 register_bg_int(6, abcsp_restart);
#endif /*ROM_BUILD_ENABLE*/
}

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 30 of 33

Porting example for Nucleus PLUS

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

where background interrupt number:

1 is used to inform the Scheduler that data is available in the Nucleus RX buffer, and that it needs to call the
function UartDrv_Rx, see section A3.6.4.

2 is used to inform the Scheduler that there are data needing to be passed to the Nucleus UART driver,
which demands that it calls the function abcsp_pumptxmsgsOut, For a more thorough description of this
issue please refer to section A3.6.5. Please note that abcsp_pumptxmsgsOut is a part of the ABCSP
protocol source code, and nothing needs to change in this function.

6 is used to inform the Scheduler that the system has restarted doing initialisation of the system, and that it
needs to call the function abcsp_restart. Please note that this background interrupt is only used if the
bootstrap function for the ROM version of the chip is used. For more information about the bootstrap
function, please refer to [BOOT ROM].

A3.6.4 UartDrv_RX

When the UART driver receives a message from the Bluetooth Core stack it must inform the Scheduler. As
described previously the UART driver is not allowed to interrupt the Scheduler background job, instead it uses
background interrupt number 1 for this purpose.

In this example the UART driver provided by Nucleus PLUS is used in order to keep the example more generic.
However, it has been necessary to make minor modifications to the Nucleus PLUS SDC_LISR routine. The
SDC_LISR routine is part of the Nucleus PLUS source code and can be found in sdc.c. One of the modifications
that have been made is that every time the SDC_LISR routine receives the character 0xC0 twice on the com port
define in the UartDrv_Configure function it activates a high level interrupt (HISR). This HISR being activated is
named bgRxIRQ, and is defined in the Application_Initialize function, see chapter A2. In order for the Scheduler
to be re-entrant safe, the bgRxIRQ only calls a function called bg_int1, which must be implemented by the
developer.

In this porting example the bg_int1 function makes a background interrupt by making a Nucleus PLUS message,
and place it in front of the Nucleus queue dedicated to the Nucleus Scheduler task. The bg_int1 function can be
found in bg_int.c and looks like this:

void bg_int1 (void)
{

make a Nucleus PLUS message, which tells the Scheduler that this message must be viewed as
a background interrupt with the interrupt number 1.

}

When the sched function obtains this background interrupt message, see section A3.2, it calls the function
UartDrv_RX, see section A3.6.3, because it now knows that some data are available in the UART driver’s RX
buffer. The UartDrv_RX source code can be found in uart.c and looks like this:

void UartDrv_Rx(void)
{

while there are some data on the Nucleus UART RX buffer, copy it into the local RX buffer.
call the function abcsp_uart_deliverbytes
in case data are still in the local RX buffer, call the bg_int1 function

}

Please note that it can be preferable to optimise the Nucleus PLUS UART driver, so that the data is taken directly
from the Nucleus RX buffer instead of copying it into a local RX buffer.

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 31 of 33

Porting example for Nucleus PLUS

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

A3.6.5 UartDrv_TX

When the host (BCHS) sends a message to the Bluetooth Core stack, ABCSP repeatedly calls the macro
ABCSP_REQ_PUMPTXMSGS to translate the message into its BCSP wire format and push these bytes out
using the UartDrv_TX function.

The ABCSP_REQ_PUMPTXMSGS macro calls a function named abcsp_req_pumptxmsgs, see config_event.h.
When porting the lower layer UART interface it is possible to redefine this macro to another function name and
implement it, thus it provides the same functionality as the abcsp_req_pumptxmsgs function. However, the most
simple way to do this is to just use the abcsp_req_pumptxmsgs function, which can be found in abcspRdHl.c.
The reason for this is that then the developer only needs to implement a function called bg_int2, instead of
rewriting the abcsp_req_pumptxmsgs function in the ABCSP source code. The abcsp_req_pumptxmsgs must not
call back into functions in the YABCSP software.

The purpose of the bg_int2 function is to inform the Scheduler that data need to be sent to the UART driver. As
explained in section A3.6.3, the Scheduler uses background interrupt 2 for this. The bg_int2 function source code
can be found in bg_int.c and it looks like this:

void bg_int2 (void)
{

make a Nucleus PLUS message, which tells the Scheduler that this message must be viewed as
a background interrupt with the interrupt number 2.

}

As illustrated the bg_int2 function makes a background interrupt 2 by placing a message in front of the Nucleus
queue, which is dedicated to the Nucleus Scheduler task. When the sched function obtains this background
interrupt message, see section A3.2, the function abcsp_pumptxmsgsOut is called, see section A3.6.3. In this
way the Scheduler is informed that data need to be sent to the UART driver without interrupting the Scheduler
background job.

Together with other functions the abcsp_pumptxmsgsOut function calls the ABCSP_UART_SENDBYTES macro,
which is defined in config_txmsg.h. This macro calls the abcsp_uart_sendbytes function in abcspTxHandler.c,
which is important because this function needs to be ported. The easiest way to do this is to use the
abcsp_uart_sendbytes function, because the developer then only needs to implement a function called
UartDrv_TX, instead of changing the function in the ABCSP source code.

In this case UartDrv_TX must pass num_to_send bytes from buf onto the UART TX buffer, and numSend holds
the number of bytes put onto the TX queue after the function returns.

 bool_t UartDrv_Tx(char *buf, uint16_t num_to_send, uint16_t *numSend)

If the bytes are passed to the UART TX buffer the function must return true else false.

In this porting example the source code of the UartDrv_Tx function can be found in uart.c, and it looks like this:

 bool_t UartDrv_Tx(char *buf, uint16_t num_to_send, uint16_t *numSend)
{

pass num_to_send bytes from buf onto Nucleus TX buffer by using the Nucleus PLUS function
call NU_SD_Put_Char
return TRUE if any of the bytes pass, else FALSE.

}

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 32 of 33

Document References

A4. Document References

_
äì
É
`
ç
êÉ

=e
ç
ëí=p

t

Document: Document number: Reference:

BlueCore™ Host Software User
Guide

BCHS-GU-001_UserGuide [USERG]

YABCSP – Yet Another BCSP stack Technical Communications Style Guidelines FEB02 [YABCSP]

Scheduler API BCHS-API-009_ScedulerApi [API]

BlueCore Serial Protocol (BCSP) AN003, AN004, AN005 [BCSP]

License Agreement
BCHS-ME-003_LicenceAgreementRfcomm
BCHS-ME-002_LicenceAgreementEval
BCHS-ME-007_LicenceAgreementHci

[LIC]

Bluetooth® Core Specification [BT11]
Nucleus PLUS reference manual Rev. 104 May 20 2002 [NU]
Nucleus PLUS Serial Driver reference
manual

Rev. 101 [NU_DRIVER]

BC COMMAND API BCHS-API-017_BcCmdApi [BOOT_ROM]

All documents are not part of the BCHS delivery, but can be found on the CSR website: www.csr.com.

bchs-gu-002P

© Copyright CSR 2004

This material is subject to CSR’s non-disclosure agreement.

Page 33 of 33

http://www.csr.com/

	List of Figures
	General Information
	Audience
	Reading Information
	Porting Method
	Scheduler Porting
	Controlling the Scheduler from the Native Kernel
	Task Scheduling
	Background Interrupt
	Message Forwarding
	Timer Handling
	Dynamic Memory Allocation Handling
	Exception Handling
	Controlled Shut Down

	Porting the UART Interface
	abcsp_init
	UartDrv_Configure
	UartDrv_RegisterHandlers
	UartDrv_Start
	UartDrv_RX
	UartDrv_TX

	Proxy Related Parameter Configuration
	Downstream Messages (Host to Scheduler)
	Upstream Messages (Scheduler to Host)
	Audio over PCM
	Audio over BCSP

