Confidential A

MTK USB2.0/ OTG Design Guide V1.2

Schematics and Cable Design

2008/05/26 MediaTek Inc.

Copyright © MediaTek Inc. All rights reserved.

Outline

- Introduction
- MTK USB2.0 schematics design
- USB2.0 layout check list
- Case Study
- USB/ OTG cable design
 - Standard USB cable
 - Customized USB cable

MTK USB2.0 Solution Introduction

- This document introduces MTK USB2.0 design and some points for attention.
 - MTK USB2.0/ OTG device can operate at USB2.0 High-Speed (HS) mode (480Mb/s) and Full-Speed (FS) mode (12Mb/s).
- General HS eye diagram is shown as below. The output swing is differential 0.4V. Bad eye diagram will lead to certification fail or signal integrity problem.

Pin Definition (1/2)

- USB2.0 pin out description.
 - General pins

Pin	Symbol	Туре	Description
1	PAD_USB_VBUS	Ю	* Comparator used for detecting changes of VBUS voltage.
2	PAD_USB_DM	IO	USB serial differential bus (minus)
3	PAD_USB_DP	Ю	USB serial differential bus (positive)
4	AVDD3_USB	VDD	Analog 3.3V supply
5	AVSS33_USB	GND	Analog 3.3V ground
6	PAD_USB_VRT	Ю	Analog 5.1K reference resistor
7	AVDD12_USB	VDD	Analog 1.2V supply.
8	AVSS12_USB	GND	Analog 1.2V ground

- Optional pins for external crystals

Pin	Symbol	Туре	Description
9	PAD_USB_XTALI	10	Reserved. Currently replaced by internal PLL.
10	PAD_USB_XTALO	IO	Reserved. Currently replaced by internal PLL.

3

2008/5/26

Pin Definition (2/2)

- Optional pins for supporting OTG

Pin	Symbol	Туре	Description
11	PAD_USB_ID	IO	Optional function for USB OTG ID pin for detecting slave plug in.

Schematics Design for USB2.0 OTG

• Take MT6238 for example

MEDINTEK

Schematics Design for USB2.0 Device (1/2)

• Take MT6238 for example

6

Schematics Design for USB2.0 Device (2/2)

• Take MT6235 for example

USB/ Charger Detection

- Used for MT6238 and later on MTK ICs
- When charger interrupt happens, turn on D- pull high 100K ohm resistor and check the polarity of D-
 - If the D- is HIGH, it is USB charger, otherwise it is a standard or a non-standard charger

8

USB/ Charger Detection (Cont.)

- Then check whether it is standard or non-standard charger. Turn on D+/D- internally 15K ohm pull low resistor and D+ 1.5K ohm pull high resistor at the same time.
 - Check D- polarity. If the D- is HIGH, it is standard charger, otherwise it is a non-standard charger.

MEDIATEK

MT6235 USB/ Charger Detection Proposal

- For MT6235, R4 and analog switch are not integrated into IC.
- Same as MT6238, but use external 100K ohm pull high resistor
 - If the D- is HIGH, it is USB charger, otherwise it is a standard or a non-standard charger

10

MT6235 USB/ Charger Detection (Cont.)

- Then check whether it is standard or non-standard charger. Turn on D+/D- internally 15K ohm pull low resistor and D+ 1.5K ohm pull high resistor at the same time.
 - Check D- polarity. If the D- is HIGH, it is standard charger, otherwise it is a non-standard charger.

High Speed USB Layout Checklist (1/2)

- General design and layout rules
 - With minimum trace lengths, route clock source and HS USB differential pairs first. Keep maximum possible distance between clocks/periodic signals to USB differential pairs to minimize crosstalk.
 - Route HS USB signal pairs together with equal length by using a minimum vias and corners. This reduces signal reflections and impedance changes.
 - Maintain parallelism between USB differential signals with the trace spacing needed to achieve 90 ohms differential impedance.
 - When it becomes necessary to turn 90°, use two 45° turns or an arc instead of making a single 90° turn. This reduces reflections on the signal by minimizing impedance discontinuities.
 - Do not route USB traces under crystals, oscillators, clock synthesizers, magnetic devices or ICs that use and/or duplicate clocks.

High Speed USB Layout Checklist (2/2)

- General design and layout rules (Conti.)
 - Stubs on HS USB signals should be avoided, as stubs will cause signal reflections and affect signal quality.
 - Avoid crossing over anti-etch if possible. Crossing over anti-etch (plane splits) increases inductance and radiation levels by forcing a greater loop area. Likewise, avoid changing layers with high-speed traces as much as practical.
 - Keep HS USB signals away from high current area. The current transient during state transitions could induce noise to USB.

Stubs

 Avoid creating unnecessary stubs on data lines, if a stub is unavoidable (for example: ESD issue), please keep the stub as short as possible.

Poor Routing Techniques

- Cross a plane split.
- Creating a stub with a test point.
- Failure to maintain parallelism.

Case Study (1/5)

- Case 1:
 - 2A36/2A37 should be removed. Large cap at USB_DP/USB_DM will lead to bad jitter performance.
 - Measured eye at board is shown below. It will occur turn-around error at system application.

16

Case Study (2/5)

- Case 2:
 - After bead, at least 0.1uF capacitor between VDD33_USB, VDD12_USB and ground must be added as follows.
 - Measured eye diagram has bad jitter performance.

Case Study (3/5)

- Case 3:
 - Some time we got worse jitter due to poor layout, then VUSB33 and VUSB12 are coupled by noise.
 - It is improved by increasing bypass capacitor C221 and C235.

Case Study (4/5)

- Case 4:
 - Customer wants to share USB data pins with audio/UART pins through the same 5-wire USB connector by using analog switch.
 - Different analog switches cause different attenuation of signals; please make sure component and layout will get proper eye diagram.
 - No suggestion on using analog switch, 11-pin USB connector could be used instead.

Case Study (5/5)

- Case 5:
 - Sometimes customer may design a special connector for USB, such as 18-pin I/O.
 - Poor cable will cause poor performance.
 - Please follow USB cable design guide.

Confidential A

USB/ OTG Cable Design

High Speed USB Cable Design

- Besides PCB layout, the cable design affects USB 2.0 performance much.
- If using standard USB HS/FS cables for front panel support ensure they meet all cabling requirements called out in Chapter 6 of the USB 2.0 Specification.
- If custom cables are used, verify the requirements of USB 2.0 cable specification of the design guideline are followed.

USB Cable Design Concept

- There are two type of cables need to be designed for the purpose of passing the specification of USB2.0 OTG
 - One is used for connecting to PC, normally mobile phone acts as a slave.
 - The other is used for connecting to external devices such as mass storage devices, normally mobile phone acts as a host.
- Each cable design is based on the specification defined in
 - "Universal Serial Bus Specification" Revision 2.0, April 27, 2000
 - "USB 2.0 Specification Engineering Change Notice # 1: Mini-B connector", 10/20/2000
 - "On-The-Go Supplement to the USB 2.0 Specification" Revision 1.0a, June 24, 2003

General USB Cable for USB2.0 (Mobile as Slave)

Enhance grounding to minimize clock skew

General USB Cable for USB2.0 (Mobile as Host)

18-pin USB Cable for USB2.0 (Mobile as Slave)

Enhance grounding to minimize clock skew

18-pin USB Cable for USB2.0 (Mobile as Host)

Enhance grounding to minimize clock skew

Why Emphasize on Grounding (full speed)

- One of customer's phone design uses 18-pin connector as USB I/O, and there is only one ground pin.
 - USB performance is poor even it's full speed USB
 - Jitter large
 - Eye diagram marginally pass

- Enhance grounding as shown in last page
 - Pass the USB-IF certification

Why Emphasize on Grounding (high speed)

- Uses 18-pin connector as USB I/O, with two ground pins and no shielding on data pins
 - USB performance is poor
 - Jitter large
 - Eye diagram fail
 - Rise time longer

- Modified cable with enhanced shielding and grounding, minimize series resistor.
 - Pass the USB-IF certification

Conclusion

- Layout and component selection are critical for USB2.0 high speed performance
 - Need to follow the design rule or there might be compatibility issue happens
- Grounding and shielding are both critical when design USB2.0 high speed capable cables
 - It can maintain USB signal quality with little jitter/ signal distortion caused by cable design

Reference

- USB-IF "Universal Serial Bus Specification" Revision 2.0, April 27, 2000
- USB-IF "USB 2.0 Specification Engineering Change Notice # 1: Mini-B connector", 10/20/2000
- USB-IF "On-The-Go Supplement to the USB 2.0 Specification" Revision 1.0a, June 24, 2003
- Intel "High Speed USB Platform Design Guidelines" Revision 1.0, 07/12/2000

Confidential A

www.mediatek.com

Copyright © MediaTek Inc. All rights reserved.